Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
1.
Current Chemistry Letters ; 12(3):567-578, 2023.
Article in English | Scopus | ID: covidwho-20245021

ABSTRACT

In the current study, the compound 4,4-dimethoxychalcone (DMC) was structurally studied and analyzed by in silico approach against Mpro to investigate its inhibitory potential. The molecular structure of the compound was confirmed by the single crystal X-ray diffraction studies. The crystal structure packing is characterized by various hydrogen bonds, C-H…π and π…π stacking. Intermolecular interactions are quantified by Hirshfeld surface analysis and the electronic structure was optimized by DFT calculations;results are in agreement with the experimental studies. Further, DMC was virtually screened against SARS-CoV-2 main protease (PDB-ID: 6LU7) using molecular docking, and molecular dynamics (MD) simulations to identify its inhibitory potential. A significant binding affinity exists between DMC and Mpro with a-6.00 kcal/mol binding energy. A MD simulation of 30ns was carried out;the results predict DMC possessing strong binding affinity and hydrogen-bonding interactions within the active site during the simulation period. Therefore, based on the results of the current investigation, it can be inferred that a DMC molecule may be able to inhibit Mpro of COVID-19. © 2023 by the authors;licensee Growing Science, Canada.

2.
Chemistryselect ; 8(21), 2023.
Article in English | Web of Science | ID: covidwho-20242400

ABSTRACT

This work sheds light on the effect of boswellic acid compounds (Alpha boswellic acid, Beta boswellic acid, 11-keto beta boswellic acid and 3-Acetyl-11-keto beta boswellic acid) upon inhibiting SARS-CoV-2 M-pro and O-M-pro (Main protease). A good docking score (-8.4 kcal/mol) is found in the case of 3-Acetyl-11-keto beta boswellic acid as compared to the reference and three other boswellic acid compounds. ADMET results suggest that all these compounds are nontoxic and their pharmacokinetic properties are satisfactory. Moreover, a stability analysis with M-pro/O-M-pro through RMSD, RMSF, hydrogen bonds and Rg parameters in MD simulations is made and we found better values than the reference case. Pre and post-MD structures of Ligands-M-pro show a similar binding site whereas a drift can be noted for L-O-M-pro. 3-Acetyl-11-keto beta boswellic acid shows an average of five hydrogen bonds and it remains stable within the binding pocket of M-pro during the simulation period in comparison to other boswellic acids compounds. Various metastable conformations are observed for all compounds in FEL (free energy landscape), however, Acyclovir-M-pro, Alpha boswellic acid-M-pro and Beta boswellic acid-O-M-pro display only one global minimum. The results suggest that these compounds can be used as potential lead molecules for breakthroughs in drug discovery.

3.
3 Biotech ; 13(7): 221, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20244210

ABSTRACT

Being attracted with their cardiotonic, antidiabetic, cough relieving activity, treatment of fever, absorbent, anti-asthmatic, etc. activities reported in ancient Ayurvedic literature, phytochemicals of Onosma bracteata wall should be evaluated for their activity against SARS-CoV-2 virus. The main objective of this study is to identify a hit molecule for the inhibition of entry, replication, and protein synthesis of SARS CoV-2 virus into the host. To achieve given objective, computational virtual screening of phytochemicals of Onosma bracteata wall has been performed against three main viral targets: spike, RdRp, and Mpro. Further, the analysis of Lipinski's Ro5 and their estimation of ADMET profiles were performed using computational tools. The MD simulations studies of top hits against each viral target have also been performed for 20 ns to ensure their stability. The analysis of results revealed that Pulmonarioside C (9) and other plant compounds showed better binding affinity towards targets than existing antiviral compounds, making them probable lead compounds against SARS-CoV-2. Structural modifications and studies through in silico analysis provided the founding stone for the establishment of SARS CoV-2 inhibitory potential of phytoconstitutents of Onosma bracteata wall.

4.
J Biomol Struct Dyn ; : 1-11, 2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-20237395

ABSTRACT

COVID-19 (Corona Virus Disease of 2019) caused by the novel 'Severe Acute Respiratory Syndrome Coronavirus-2' (SARS-CoV-2) has wreaked havoc on human health and the global economy. As a result, for new medication development, it's critical to investigate possible therapeutic targets against the novel virus. 'Non-structural protein 15' (Nsp15) endonuclease is one of the crucial targets which helps in the replication of virus and virulence in the host immune system. Here, in the current study, we developed the structure-based pharmacophore model based on Nsp15-UMP interactions and virtually screened several databases against the selected model. To validate the screening process, we docked the top hits obtained after secondary filtering (Lipinski's rule of five, ADMET & Topkat) followed by 100 ns molecular dynamics (MD) simulations. Next, to revalidate the MD simulation studies, we have calculated the binding free energy of each complex using the MM-PBSA procedure. The discovered repurposed drugs can aid the rational design of novel inhibitors for Nsp15 of the SARS-CoV-2 enzyme and may be considered for immediate drug development.

5.
Nat Prod Res ; : 1-5, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-20234019

ABSTRACT

The anti-urease effects of active extract and three isolated phenolic compounds viz., chlorogenic acid, trans-ferulic acid, and gallic acid of leaves of Zanthoxylum armatum DC were evaluated. The compounds were identified based on HPLC-PDA, HR-MS, and NMR analysis. Molecular docking analysis revealed that these compounds significantly interacted with Helicobacter pylori urease and SARS-CoV2 vital proteins. Chlorogenic acid was found to show the strongest interaction with the H. pylori urease and coronavirus main protease (Mpro, also called 3CLpro), while gallic acid with five spike proteins (Cathepsin L) of SARS-CoV2. The compounds were checked for their drug-likeliness character and were found to pass the Lipinski filter and abide by Veber's rule and passed through ADMET. Chlorogenic acid was simulated for 50 ns using GROMACS. The study shows that chlorogenic acid isolated from Z. armatum could be a significant antagonist of the H. pylori urease.

6.
J Biomol Struct Dyn ; : 1-12, 2022 May 05.
Article in English | MEDLINE | ID: covidwho-20232244

ABSTRACT

The coronavirus disease (COVID-19) pandemic has rapidly extended globally and killed approximately 5.83 million people all over the world. But, to date, no effective therapeutic against the disease has been developed. The disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enters the host cell through the spike glycoprotein (S protein) of the virus. Subsequently, RNA-dependent RNA polymerase (RdRp) and main protease (Mpro) of the virus mediate viral transcription and replication. Mechanistically inhibition of these proteins can hinder the transcription as well as replication of the virus. Recently oxysterols and its derivative, such as 25 (S)-hydroxycholesterol (25-HC) has shown antiviral activity against SARS-CoV-2. But the exact mechanisms and their impact on RdRp and Mpro have not been explored yet. Therefore, the study aimed to identify the inhibitory activity of 25-HC against the viral enzymes RdRp and Mpro simultaneously. Initially, a molecular docking simulation was carried out to evaluate the binding activity of the compound against the two proteins. The pharmacokinetics (PK) and toxicity parameters were analyzed to observe the 'drug-likeness' properties of the compound. Additionally, molecular dynamics (MD) simulation was performed to confirm the binding stability of the compound to the targeted protein. Furthermore, molecular mechanics generalized Born surface area (MM-GBSA) was used to predict the binding free energies of the compound to the targeted protein. Molecular docking simulation identified low glide energy -51.0 kcal/mol and -35.0 kcal/mol score against the RdRp and Mpro, respectively, where MD simulation found good binding stability of the compound to the targeted proteins. In addition, the MM/GBSA approach identified a good value of binding free energies (ΔG bind) of the compound to the targeted proteins. Therefore, the study concludes that the compound 25-HC could be developed as a treatment and/or prevention option for SARS-CoV-2 disease-related complications. Although, experimental validation is suggested for further evaluation of the work.Communicated by Ramaswamy H. Sarma.

7.
J Biomol Struct Dyn ; : 1-12, 2022 Apr 26.
Article in English | MEDLINE | ID: covidwho-20231987

ABSTRACT

Theoretical analyses of two phenothiazine derivatives, 10-[3-(dimethylamino)-2-methylpropyl]phenothiazine-2-carbonitrile (CYM) and 2-[4-[3-(2-chlorophenothiazin-10-yl)propyl]piperazin-1-yl]ethanol (PAZ) are reported using density functional theory (DFT) and molecular dynamics (MD) simulations. Spectroscopic studies, different electronic and chemical parameters are predicted. Red and yellow in electrostatic potential plot is in rings and oxygen atom in PAZ and C≡N and rings in CYM are sensitive to nucleophilic attacks. The blue in hydrogen atoms refer to electrophilic attack in both PAZ and CYM. Stability of the protein-ligand complex formed with these derivatives and angiotensin-converting enzyme 2 (ACE2) was investigated using MD simulation. Radius of gyration of C-alpha atom of 6VW1 displayed the conformational convergence toward a compact structure leading to stable 6VW1-ligand complex which are also in agreement with root mean square fluctuation (RMSF) values. Localized area predicts reactive sites for Au and H2O molecules interaction with these compounds for further practical applications. Charge density is localized on both molecules and also tries to move toward Au-Au dimer and water molecule and such they are expected to contribute to the sensing performance. Communicated by Ramaswamy H. Sarma.

8.
J Biomol Struct Dyn ; : 1-14, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20234146

ABSTRACT

Since 2019 the SARS-CoV-2 and its variants caused COVID-19, such incidents brought the world in pandemic situation. This happened due to furious mutations in SARS-CoV-2, in which some variants had high transmissibility and infective, this led the virus emerged as virulent and worsened the COVID-19 situation. Among the variants, P323L is one of the important mutants of RdRp in SARS-CoV-2. To inhibit the erroneous function of this mutated RdRp, we have screened 943 molecules against the P323L mutated RdRp with the criteria that the molecules with 90% similar to the structure of remdesivir (control drug) resulted nine molecules. Further, these molecules were evaluated by induced fit docking (IFD) identified two molecules (M2 & M4) which are forming strong intermolecular interactions with the key residues of mutated RdRp and has high binding affinity. Docking score of the M2 and M4 molecules with mutated RdRp are -9.24 and -11.87 kcal/mol, respectively. Further, to understand the intermolecular interactions, conformational stability, the molecular dynamics simulation and binding free energy calculations were performed. The binding free energy values of M2 and M4 molecules with the P323L mutated RdRp complexes are -81.60 and -83.07 kcal/mol, respectively. The results of this in silico study confirm that M4 is a potential molecule; hence, it may be considered as the potential inhibitor of P323L mutated RdRp to treat COVID-19 after clinical investigation.Communicated by Ramaswamy H. Sarma.

9.
Int J Biol Macromol ; 244: 125096, 2023 Jul 31.
Article in English | MEDLINE | ID: covidwho-20231041

ABSTRACT

Baricitinib is a Janus Kinase (JAK) inhibitor that is primarily used to treat moderately to severely active rheumatoid arthritis in adults and has recently been reported for the treatment of patients with severe COVID-19. This paper describes the investigation of the binding behavior of baricitinib to human α1-acid glycoprotein (HAG) employing a variety of spectroscopic techniques, molecular docking and dynamics simulations. Baricitinib can quench the fluorescence from amino acids in HAG through a mix of dynamic and static quenching, according to steady-state fluorescence and UV spectra observations, but it is mainly static quenching at low concentration. The binding constant (Kb) of baricitinib to HAG at 298 K was at the level of 104 M-1, indicating a moderate affinity of baricitinib to HAG. Hydrogen bonding and hydrophobic interactions conducted the main effect, according to thermodynamic characteristics, competition studies between ANS and sucrose, and molecular dynamics simulations. For the change in HAG conformation, the results of multiple spectra showed that baricitinib was able to alter the secondary structure of HAG as well as increase the polarity of the microenvironment around the Trp amino acid. Furthermore, the binding behavior of baricitinib to HAG was investigated by molecular docking and molecular dynamics simulations, which validated experimental results. Also explored is the influence of K+, Co2+, Ni2+, Ca2+, Fe3+, Zn2+, Mg2+ and Cu2+plasma on binding affinity.


Subject(s)
COVID-19 , Janus Kinase Inhibitors , Humans , Molecular Docking Simulation , Protein Binding , Orosomucoid/chemistry , COVID-19 Drug Treatment , Molecular Dynamics Simulation , Protein Structure, Secondary , Thermodynamics , Binding Sites , Spectrometry, Fluorescence
10.
Int J Biol Macromol ; 242(Pt 4): 125153, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-20230938

ABSTRACT

The SARS-CoV-2 spike protein (S) represents an important viral component that is required for successful viral infection in humans owing to its essential role in recognition of and entry to host cells. The spike is also an appealing target for drug designers who develop vaccines and antivirals. This article is important as it summarizes how molecular simulations successfully shaped our understanding of spike conformational behavior and its role in viral infection. MD simulations found that the higher affinity of SARS-CoV-2-S to ACE2 is linked to its unique residues that add extra electrostatic and van der Waal interactions in comparison to the SARS-CoV S. This illustrates the spread potential of the pandemic SARS-CoV-2 relative to the epidemic SARS-CoV. Different mutations at the S-ACE2 interface, which is believed to increase the transmission of the new variants, affected the behavior and binding interactions in different simulations. The contributions of glycans to the opening of S were revealed via simulations. The immune evasion of S was linked to the spatial distribution of glycans. This help the virus to escape the immune system recognition. This article is important as it summarizes how molecular simulations successfully shaped our understanding of spike conformational behavior and its role in viral infection. This will pave the way to us preparing for the next pandemic as the computational tools are tailored to help fight new challenges.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Molecular Dynamics Simulation , Protein Binding , Angiotensin-Converting Enzyme 2/chemistry , Polysaccharides
11.
Inform Med Unlocked ; 40: 101281, 2023.
Article in English | MEDLINE | ID: covidwho-2328250

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, has globally affected both human health and economy. Several variants with a high potential for reinfection and the ability to evade immunity were detected shortly after the initial reported case of COVID-19. A total of 30 mutations in the spike protein (S) have been reported in the SARS-CoV-2 (BA.2) variant in India and South Africa, while half of these mutations are in the receptor-binding domain and have spread rapidly throughout the world. Drug repurposing offers potential advantages over the discovery of novel drugs, and one is that it can be delivered quickly without lengthy assessments and time-consuming clinical trials. In this study, computational drug design, such as pharmacophore-based virtual screening and MD simulation has been concentrated, in order to find a novel small molecular inhibitor that prevents hACE2 from binding to the receptor binding domain (RBD). three medicinal compound databases: North-East African, North African, and East African were screened and carried out a multi-step screening approach that identified three compounds, which are thymoquinol 2-O-beta-glucopyranoside (C1), lanneaflavonol (C2), and naringenin-4'-methoxy-7-O-Alpha-L-rhamnoside (C3), with excellent anti-viral properties against the RBD of the omicron variant. Furthermore, PAIN assay interference, computation bioactivity prediction, binding free energy, and dissociation constant were used to validate the top hits, which indicated good antiviral activity. The three compounds that were found may be useful against COVID-19, though more research is required. These findings could aid the development of novel therapeutic drugs against the emerging Omicron variant of SARS-CoV-2.

12.
Eurobiotech Journal ; 6(1):27-31, 2022.
Article in English | EMBASE | ID: covidwho-2325387

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in December 2019, and shortly after pandemic has been declared by the World Health Organization (WHO) due to its unstoppable global spread. Considerable amount of effort has beenput around the World in order to develop a safe and effective vaccine against SARS-CoV-2. Inactivated and RNA vaccines have already passed phase three studies showing sufficient efficacy and safety, respectively. Nowadays, there is a noticeable dominance of SARS-CoV-2 variants with various mutations over the wild type SARS-CoV-2. However, there is no report showing the efficacy of these vaccines on these variants. This case study describes a thirty-eight-year-old male reported to be infected with SARS-CoV-2 alpha variant following two doses of inactive CoronaVac administration with a protective level of SARS-CoV-2 specific antibodies. The variant analysis of the virus reported to be positive for N501Y mutation.This is the first case in the literature demonstrating that inactive SARS-CoV-2 vaccine might have a lower efficacy on alpha variant.Copyright © 2022 Cenk Serhan Ozverel et al., published by Sciendo.

13.
J Nutr Sci ; 12: e56, 2023.
Article in English | MEDLINE | ID: covidwho-2315067

ABSTRACT

The coronavirus disease 2019 (COVID-19) has led to the implementation of restrictions to reduce transmission worldwide. The restrictions and measures have affected the psychological health and eating habits. The objective of the present study was to evaluate dietary habits, lifestyle changes, adherence to the Mediterranean diet (MD) and fear of COVID-19 in Turkey during the pandemic. A cross-sectional online survey of socio-demographic characteristics, anthropometric measurements, nutrition, physical activity and lifestyle habits was used for data collection. The fear of COVID-19 levels of the participants was determined by the fear of COVID-19 scale (FCV-19S). The Mediterranean Diet Adherence Screener (MEDAS) was used to evaluate participants' adherence to the MD. The differences between the FCV-19S and MEDAS according to gender were compared. Eight hundred and twenty subjects (76⋅6 % women and 28⋅4 % men) were evaluated within the study. The mean of MEDAS (ranged between 0 and 12) was 6⋅4 ± 2⋅1, and almost half of the participants moderately adhered to the MD. The mean of FCV-19S (ranged between 7 and 33) was 16⋅8 ± 5⋅7, while women's FCV-19S and MEDAS were significantly higher than men's (P < 0⋅001). The consumption of sweetened cereals, grains, pasta, homemade bread and pastries of the respondents with high FCV-19S were higher than in those with low FCV-19S. High FCV-19S was also characterized by decreased take-away food and fast food consumption in approximately 40 % of the respondents (P < 0⋅01). Similarly, women's fast food and take-away food consumption decreased more than men's (P < 0⋅05). In conclusion, the respondents' food consumption and eating habits varied according to the fear of COVID-19.


Subject(s)
COVID-19 , Diet, Mediterranean , Male , Humans , Female , Cross-Sectional Studies , Pandemics , Fear , Bread
14.
J Biomol Struct Dyn ; : 1-14, 2023 May 02.
Article in English | MEDLINE | ID: covidwho-2319856

ABSTRACT

With the advent of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak, efforts are still in progress to find out a functional cure for the infection. Among the various protein targets, nsp16 capping protein is one of the vital targets for drug development as it protects the virus against the host cell nucleases and evading innate immunity. The nsp16 protein forms a heterodimer with a co-factor nsp10 and triggers 2'-O-methyltransferase activity which catalyzes the conversion of S-adenosyl methionine into S-adenosyl homocysteine. The free methyl group is transferred to the 2'-O position on ribose sugar at the 5' end of mRNA to form the cap-1 structure which is essential for replication of the virus and evading the innate immunity of the host. In this study, we identify a potential lead natural bioactive compound against nsp16 protein by systematic cheminformatic analysis of more than 144k natural compounds. Virtual screening, molecular docking interactions, ADMET profiling, molecular dynamics (MD) simulations, molecular mechanics-generalized born surface area (MM-GBSA), free energy analysis and density functional theory analysis were used to discover the potential lead compound. Our investigation revealed that ZINC8952607 (methyl-[(6-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-yl)aminomethyl]BLAHone) has the greatest binding affinity and best pharmacokinetic parameters due to presence of carbazol and BLAHone (biaryl moiety). Further, time-dependent MD simulation analysis substantiates the stability and rigidness of nsp16 protein even after interaction with the lead compound. We believe that the compound ZINC8952607 might establish as a novel natural drug candidate against CoVID-19 infection.Communicated by Ramaswamy H. Sarma.

15.
J Biomol Struct Dyn ; : 1-20, 2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-2317280

ABSTRACT

The first direful biomolecular event leading to COVID-19 disease is the SARS-CoV-2 virus surface spike (S) protein-mediated interaction with the human transmembrane protein, angiotensin-converting enzyme 2 (hACE2). Prevention of this interaction presents an attractive alternative to thwart SARS-CoV-2 replications. The development of monoclonal antibodies (mAbs) in the convalescent plasma treatment, nanobody, and designer peptides, which recognizes epitopes that overlap with hACE2 binding sites in the receptor-binding domain (RBD) of S protein (S/RBD) and thereby blocking the infection has been the center stage of therapeutic research. Here we report atomistic and reliable in silico structure-energetic features of the S/RBD interactions with hACE2 and its two inhibitors (convalescent mAb, B38, and an alpaca nanobody, Ty1). The discovered potential of mean forces exhibits free energy basin and barriers along the interaction pathways, providing sufficient molecular insights to design a B38 mutant and a Ty1-based peptide with higher binding capacity. While the mutated B38 forms a 60-fold deeper free energy minimum, the designer peptide (Ty1-based) constitutes 38 amino acids and is found to form a 100-fold deeper free energy minimum in the first binding basin than their wild-type variants in complex with S/RBD. Our strategy may help to design more efficacious biologics towards therapeutic intervention against the current raging pandemic.Communicated by Ramaswamy H. Sarma.

16.
J Biomol Struct Dyn ; : 1-18, 2022 Apr 25.
Article in English | MEDLINE | ID: covidwho-2313701

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused appalling conditions over the globe, which is currently faced by the entire human population. One of the primary reasons behind the uncontrollable situation is the lack of specific therapeutics. In such conditions, drug repurposing of available drugs (viz. Chloroquine, Lopinavir, etc.) has been proposed, but various clinical and preclinical investigations indicated the toxicity and adverse side effects of these drugs. This study explores the inhibition potency of phytochemicals from Tinospora cordifolia (Giloy) against SARS CoV-2 drugable targets (spike glycoprotein and Mpro proteins) using molecular docking and MD simulation studies. ADMET, virtual screening, MD simulation, postsimulation analysis (RMSD, RMSF, Rg, SASA, PCA, FES) and MM-PBSA calculations were carried out to predict the inhibition efficacy of the phytochemicals against SARS CoV-2 targets. Tinospora compounds showed better binding affinity than the corresponding reference. Their binding affinity ranges from -9.63 to -5.68 kcal/mole with spike protein and -10.27 to -7.25 kcal/mole with main protease. Further 100 ns exhaustive simulation studies and MM-PBSA calculations supported favorable and stable binding of them. This work identifies Nine Tinospora compounds as potential inhibitors. Among those, 7-desacetoxy-6,7-dehydrogedunin was found to inhibit both spike (7NEG) and Mpro (7MGS and 6LU7) proteins, and Columbin was found to inhibit selected spike targets (7NEG and 7NX7). In all the analyses, these compounds performed well and confirms the stable binding. Hence the identified compounds, advocated as potential inhibitors can be taken for further in vitro and in vivo experimental validation to determine their anti-SARS-CoV-2 potential.Communicated by Ramaswamy H. Sarma.

17.
J Biomol Struct Dyn ; : 1-16, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-2313031

ABSTRACT

Being highly transmissible, severe acute respiratory syndrome coronavirus (SARS-CoV-2) has affected millions of people causing devastating global impact and has also not slowed down even after vaccination. The emerges of new strains has made more concerns than the original one. We need a new therapeutic approach against the disease. Our comprehensive in silico study investigates dual herbal combinatorial methanolic extracts of W. somnifera (W) alone and with P. emblica (P) (W:P/1:4) , T. sinensis (T) (W:T/1:4), B. monnieri (B) (W:B/1:1), O. basilicum (O) (W:O/1:4), A. racemosus (A) (W:A/4:1) for potential four phytochemicals as ligands docked with eight COVID-19 Nonstructural proteins (nsp)-main protease (PDB ID:6LU7), papain-like protease (6WUU), helicase ADP (2XZL), N7-methyltransferase (5C8S), endoribonuclease (6WLC), 2'O-methyltransferase (6WVN), RNA dependent RNA polymerase (6M71), and 3Cprotease (6YNQ) along with Remdesivir and Hydroxychloroquine. Ligands from W:P/1:4 showed remarkable docking score (-9.01 kcal/mol) 6M71-(8E,11E,14E)-eicosa-8,11,14-trienoicacidmethylester (EIS) and (-9.99 kcal/mol) 6YNQ-N-[(E)-[4-[(2-methoxydibenzofuran-3-yl)amino]-4-oxobutan-2-ylidene]amino] 4nitrobenzamide (MET). Further, MD simulations were studied for 100 ns and showed the complexes were flexible, stable in the binding pockets of the receptors, and MM-PBSA analysis determined high binding energy of -129.673 ± 15.284 and -134.594 ± 7.085 for 6M71-EIS (Asn496, Lys577, Arg569) and 6YNQ-MET (Cys145, His41). Finally, in vitro JURKAT E6.1 cell lines treated with W:P/1:4 and W:O/1:4 methanolic extracts yielded 44.06 and 31.53 ng/mL levels for interferon alpha to counteract an external stimulus by establishing an antiviral state. Thus, nsp is targeted to design effective antiviral drugs for developing an effective therapeutic approach to combat viral RNA synthesis, processing, and suppression of host immunity.

18.
Mol Divers ; 2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2309212

ABSTRACT

Pro-inflammation, which is developed due to the increased production of cytokines, mainly interleukin-6 (IL-6), during the working of immune system pathways, becomes a major concern these days for many researchers. So, it is desired to design, screen, and synthesize new molecules with multi-parametric features showing their efficacy for Toll-like receptors (TLRs) and inhibiting the disease-causing receptor sites like viral infections, cancers, etc. along with controlling inflammation, fever, and other side effects during such pathways. Further, looking at the literature, curcumin a multi-targeted agent is showing its efficiency toward various receptor sites involved in many diseases as mentioned above. This fascinated us to build up new molecules which behave like curcumin with minimum side effects. In silico studies, involving ADMET studies, toxicological data, and docking analyses, of newly synthesized compounds (3-5) along with tautomers of curcumin i.e., (1-2), and some reported compounds like 9 and 10 have been studied in detail. Great emphasis has been made on analyzing binding energies, protein-ligand structural interactions, stabilization of newly synthesized molecules against various selected receptor sites using such computational tools. Compound 3 is the most efficient multifunctional agent, which has shown its potential toward most of the receptor sites in docking analysis. It has also responded well in Molecular dynamics (MD) simulation toward 5ZLN, 4RJ3, 4YO9, 4YOJ, and 1I1R sites. Finally, studies were extended to understand in vitro anti-inflammatory activity for particularly compound 3 in comparison to diclofenac and curcumin, which signifies the efficiency of compound 3.

19.
J Enzyme Inhib Med Chem ; 38(1): 2201402, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2308396

ABSTRACT

Vibrio cholerae causes life-threatening infections in low-income countries due to the rise of antibacterial resistance. Innovative pharmacological targets have been investigated and carbonic anhydrases (CAs, EC: 4.2.1.1) encoded by V. cholerae (VchCAs) emerged as a valuable option. Recently, we developed a large library of para- and meta-benzenesulfonamides characterised by moieties with a different flexibility degree as CAs inhibitors. Stopped flow-based enzymatic assays showed strong inhibition of VchαCA for this library, while lower affinity was detected against the other isoforms. In particular, cyclic urea 9c emerged for a nanomolar inhibition of VchαCA (KI = 4.7 nM) and high selectivity with respect to human isoenzymes (SI≥ 90). Computational studies revealed the influence of moiety flexibility on inhibitory activity and isoform selectivity and allowed accurate SARs. However, although VchCAs are involved in the bacterium virulence and not in its survival, we evaluated the antibacterial activity of such compounds, resulting in no direct activity.


Subject(s)
Carbonic Anhydrases , Vibrio cholerae , Humans , Structure-Activity Relationship , Molecular Structure , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Carbonic Anhydrases/metabolism
20.
Pharmakeftiki ; 35(1):26-47, 2023.
Article in English | Scopus | ID: covidwho-2290883

ABSTRACT

There are a few small organic molecules against SARS-CoV-2 that has been discovered since the epidemic commenced in November 2019. The con-ventional medication discovery approach demands more than a decade of the year of laborious research and development and substantial financial commitment, which is not achievable in the face of the current epidemic. This study aims to discover and recognize the most effective and promising molecules against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and spike protein targets through molecular docking screening of 120 phytochemicals from six different Ayurveda medicinal plants. The binding affinities were studied using a structure-based drug design of molecular docking, divulging 10 molecules possessing greater affinity towards the target than the reference drug molnupiravir. Molecular docking analysis identified 10 phytochemicals, castalagin, wedelolactone, arjungenin, bet-ulin, galbacin, shinpterocarpin, liquiritin, cordioside, licopyranocoumarin, and daucosterol from different kinds of ayurvedic medicinal plants phyto-chemicals possessing greater affinity against SARS-CoV-2-RdRp and spike protein targets. Two molecules, namely castalagin and wedelolactone, with low binding energies, were the most promising. Furthermore, we carried out MD simulations for the castalagin-protein complexes based on the docking score. Molecular ADMET profile estimation showed that the docked phytochemicals were safe. The present study suggested that active phytochemicals from medicinal plants could inhibit RdRp and spike the protein of SARS-CoV-2. © 2023, Zita Medical Managent. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL